Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Microsc Res Tech ; 87(3): 434-445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909218

RESUMO

The genus Ajuga is widely distributed in temperate to subtropical regions, and four species are currently recognized in Korea (A. decumbens, A. multiflora, A. nipponensis, and A. spectabilis), but epidermal anatomical differences across these species have never been described. A comparative study of the leaf micromorphological characteristics of Korean Ajuga species was performed using light microscopy (LM) and scanning electron microscopy (SEM) to elucidate their taxonomic usefulness and to assess leaf micromorphological diversity. Considerable diversity in epidermal and stomatal anatomy was observed across Korean Ajuga species. Species had both hypostomatic or amphistomatic leaves, with anomocytic, anisocytic, diactyic, or actinocytic stomatal complexes. Guard cell length across species ranged from 17.66 ± 0.57 µm to 32.50 ± 2.38 µm and correlated with genome size. Abnormal stomata were frequently observed in three species (A. decumbens, A. multiflora, and A. nipponensis) but not in A. spectabilis. Three types of glandular trichomes were found: peltate in all species, short-stalked in all species, and long-stalked glandular trichomes in A. multiflora. Among the investigated leaf micromophological characters, trichome type, epidermal cell shape, and stomatal morphology were all taxonomically informative traits at a species level. RESEARCH HIGHLIGHTS: A comprehensive micromorphological description of the leaf surface is provided for Korean Ajuga species using scanning electron microscopic (SEM) and light microscopic (LM) analyses. The diverse range of stomatal development and the occurrence of polymorphic stomatal types are documented for the first time in Korean Ajuga species. The great diversity in stomatal and trichome morphology in Korean Ajuga species are taxonomically useful traits for species identification.


Assuntos
Ajuga , Estômatos de Plantas , Estômatos de Plantas/ultraestrutura , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Tricomas/ultraestrutura , Microscopia Eletrônica de Varredura , Células Epidérmicas , Epiderme , República da Coreia
2.
Microsc Res Tech ; 87(3): 534-545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950576

RESUMO

Aconitum napellus L. is a popular medicinal plant extensively used in homeopathy. This article provides detailed morphology and microscopy, including the anatomical and histochemical features of the herb, to aid authentication and quality control. In cross-section, the root in secondary growth shows the phloem surrounded by pericyclic fibers and a well-developed xylem. The stem is irregular in outline, displaying unicellular trichomes and many free collateral vascular bundles encircling the pith. The leaf is dorsiventral, hypostomatic with anomocytic and anisocytic stomata, and shows non-glandular trichomes. The floral parts are characterized by uniseriate epidermises, homogeneous mesophyll, anomocytic stomata on the abaxial surface, trichomes, and oval pollen grains. The tissue fragments in powdered herbs show these characteristics and have numerous starch grains with thimble-shaped, linear or star-shaped hilum. The detailed macroscopic and microscopic analysis provided in this study can help in the authentication and quality control of A. napellus raw materials. RESEARCH HIGHLIGHTS: Key anatomical, micromorphological, and microchemical features of Aconitum napellus are described. The results of the study can support the taxonomy of the genus Aconitum. Morphological standardization of the species reported here is helpful in the quality control of this herb.


Assuntos
Aconitum , Estômatos de Plantas , Estômatos de Plantas/ultraestrutura , Folhas de Planta/anatomia & histologia , Epiderme Vegetal/ultraestrutura , Tricomas/ultraestrutura , Microscopia Eletrônica de Varredura
3.
Microsc Res Tech ; 87(5): 869-875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38115224

RESUMO

Understanding the anatomical traits of the foliar epidermis is essential for making precise species identification and categorization. In this study, scanning electron microscopy (SEM) was used to examine the taxonomically significant foliar epidermal traits of Hydrangea luteovenosa and H. serrata. The qualitative and quantitative traits observed included the epidermal cell form, cuticle presence, trichome morphology, stomatal type, and guard cell features. H. serrata had a thin and smooth cuticle, and epidermal cells organized compactly into cubic or hexagonal shapes. The stomata were of the anomocytic type and dispersed, while the trichomes were straightforward, unbranched, and distributed sparsely. The guard cells had distinct cell walls and a kidney-shaped morphology. These crucial traits for taxonomy were in line with an epidermis composed of three to five layers. Similar polygonal epidermal cells with a compact arrangement were observed in H. luteovenosa, together with a thin and smooth cuticle. The stomata were anomocytic and dispersed, while the trichomes were straightforward, unbranched, and sparsely distributed. The guard cells have distinct cell walls and a kidney-shaped morphology. The traits were indicative of an epidermal structure with three to five layers. These traits helped correctly identify and categorize these two species of Hydrangea. In addition to assisting in the taxonomic classification of these species and advancing knowledge of their ecological and evolutionary links, the SEM study provided insightful information into the structural variety of these species. RESEARCH HIGHLIGHTS: Microscopic characteristics of H. luteovenosa and H. serrata Understanding the anatomical traits of the foliar epidermis is essential for precise species identification and categorization.


Assuntos
Hydrangea , Estômatos de Plantas , Estômatos de Plantas/ultraestrutura , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Tricomas/ultraestrutura , Microscopia Eletrônica de Varredura
4.
Microsc Microanal ; 29(4): 1531-1555, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37488823

RESUMO

This study examines the role of light microscopic (LM) and scanning electron microscopic (SEM) micromorphological traits of the epidermis in identifying and classifying invasive plants. SEM was conducted to increase our understanding of microscopic qualities that are not visible in light microscopy and to elucidate unclear affinities among invasive species. The study examines invasive species' morphological and anatomical characteristics from the Pothohar Plateau of Pakistan for the first time. The results showed that various micromorphological features are very useful for species' accurate identification. Adaxial and abaxial surfaces of leaves showed variations in subsidiary cells, glands, anticlinal wall patterns, stomata, and epidermal cells. Epidermal cell shapes observed were irregular, elongated, rectangular, and polygonal. Epidermal cells having maximum length were calculated in Stellaria media (126.3 µm) on adaxial side. On the abaxial surface, the minimum length was noticed in Eucalyptus camaldulensis (28.5 µm). Both glandular and nonglandular trichomes were examined, ranging from unicellular to multicellular. Most of the investigated specimens of leaves were amphistomatic, while some were hypostomatic, like Alternanthera pungens, Calotropis procera, Cannabis sativa, Lantana camara, and Thevetia peruviana. Leaf epidermal morphology contains numerous useful systematic features for accurate identifications of plant species. The micromorphological attributes under observation provide a standard criterion to the researcher for identifications of invasive flora in future morpho-taxonomic studies.


Assuntos
Epiderme Vegetal , Tricomas , Tricomas/ultraestrutura , Epiderme Vegetal/anatomia & histologia , Estômatos de Plantas/ultraestrutura , Espécies Introduzidas , Folhas de Planta , Microscopia Eletrônica de Varredura , Células Epidérmicas/ultraestrutura , Epiderme
5.
Microsc Res Tech ; 86(11): 1484-1495, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37477095

RESUMO

The knowledge of essential oil antimicrobial activity of Lamiaceous species is assessed to describe its effects. The comprehensive foliar trichomes and stomatal morphology of the leaves of essential oil-bearing plants from the family Lamiaceae revealed diverse antimicrobial properties. The aim of this study was to investigate the foliar anatomical traits of 19 Lamiaceous taxa belonging to different tribes using light and scanning electron microscopy to correctly diagnose the species. The microanatomy of the foliar epidermis, trichomes diversity, and the stomatal apertural complex was visualized. Quantitative measurements were noted to describe the variations and the qualitative aspects for example, polygonal shape epidermal cells were examined. The stomatal aperture of four types and trichomes appendages both non-glandular and glandular was identified. Significant variation was found in both quantitative and qualitative traits, including unique ornamentation on the trichomes. The taxonomic key was constructed for accurate identification using qualitative morpho-structural traits. The outcomes of this research explored taxonomically to accurately identify the Lamiaceous species using anatomical characters. This study will provide provides the ecological adaptation linked to evolutionary traits of leaf surfaces that evolve with time to adapt the harsh environmental conditions. RESEARCH HIGHLIGHTS: Investigated foliar anatomical traits of 19 Lamiaceous species The anatomy and antimicrobial activity of essential oil yielding Lamiaceae species. SEM revealed diverse aspects including peculiar sculptured trichomes Microscopic identification of different stomatal complex.


Assuntos
Lamiaceae , Óleos Voláteis , Estômatos de Plantas/ultraestrutura , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Tricomas/ultraestrutura , Microscopia Eletrônica de Varredura , Epiderme , Lamiaceae/anatomia & histologia , Óleos Voláteis/farmacologia
6.
Microsc Res Tech ; 85(9): 3217-3236, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35716090

RESUMO

In this research, 25 medicinally used Lamiaceae species belonging to 20 genera have been studied and identified for the nine disorders. We used scanning electron microscopy (SEM) for qualitative and quantitative morphological character identification. The micromorphological characters observed here were important for distinguishing the studied taxa. The highest medicinal values were reported for Vitex negundo and Scutellaria baicalensis for all considered categories except urinary and otorhinolaryngology disorders. The foliar epidermal anatomical characteristics revealed that the micromorphological features of the Lamiaceae species provide taxonomically significant and accurate identification information to delimitate the family species. Moreover, we focused on both qualitative (epidermal cell shape, stomata type, stomatal pore shape, subsidiary cell shape, glandular trichomes, and non-glandular trichome shape) as well as quantitative features (epidermal cell size, stomata size, stomatal pore size, subsidiary cell size, and trichomes size). The trichomes diversity was different in most species' on adaxial and abaxial surfaces. In most species, anomocytic stomata were observed, but other types such as diacytic, paracytic, and tetracytic type stomata were also examined. The diverse pattern of anatomical characters suggests that the studied taxa provide insight evidence for the taxonomic observation of the Traditional Chinese Medicinal plants from the Lamiaceae. This work sets an avenue for future research and taxonomic exploration of medicinal flora through microscopic investigations. RESEARCH HIGHLIGHTS: This research offers a thorough microscopic identification of the family Lamiaceae. Taxonomic information on the trichome characters and types for the accurate authentication. Qualitative and quantitative characterization of 25 medicinally used Lamiaceae taxa.


Assuntos
Lamiaceae , Epiderme Vegetal , Lamiaceae/anatomia & histologia , Microscopia Eletrônica de Varredura , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/ultraestrutura , Tricomas/ultraestrutura
7.
Microsc Res Tech ; 85(3): 1194-1198, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34843150

RESUMO

The anatomical variations of two plants from the Nyctaginaceae family, Bougainvillea spectabilis and Bougainvillea glabra, were studied using light and scanning electron microscopy methods in this work. Bougainvillea is a dicotyledonous with defensive traits that can withstand extreme (hot and dry) settings; according to the findings, crystal inclusions in cells, woody spines, and an abnormal development pattern are all features that help them survive against predators and are unique to this species. The Bougainvillea plant's leaves are arranged in simple pattern, alternate to each other along stem having an undulate leaves edge and an oval form. The xylem and phloem, palisade, parenchyma midrib, spongy mesophyll, raphide crystal bundles, and trichomes were all visible when bracts and leaves were transversally sectioned and dyed with toluidine blue O (TBO). The presence of crystals was confirmed by a detailed examination of the transverse leaves by using bright-field and cross-polarizing microscopy. Dissecting microscopic examination showed that all the leaves revealed leaves venation pattern that had midvein, lateral veins areoles, and trichomes. Although trichomes have been identified on both sides, a closer look at a cleaned leaf dyed with TBO showed multicellular abundant trichomes on adaxial surface. Stomata complexes were typically found on the abaxial surface of the leaf according to epidermal peels. Present studies also showed that on adaxial side, stomata were lesser in number or were absent and also showed that the morphologies of the pavement cells on the adaxial and abaxial sides of the leaf differed.


Assuntos
Nyctaginaceae , Estômatos de Plantas , Microscopia Eletrônica de Varredura , Paquistão , Folhas de Planta/ultraestrutura , Estômatos de Plantas/ultraestrutura , Tricomas/ultraestrutura
8.
Cells ; 10(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34831377

RESUMO

Hydrangea macrophylla is a popular perennial ornamental shrub commercially grown as potted plants, landscape plants, and cut flowers. In the process of reproduction and production of ornamental plants, the absorption of nutrients directly determines the value of the ornamental plants. Hydrangea macrophylla is very sensitive to the content and absorption of the micronutrient iron (Fe) that affects growth of its shoots. However, the physiological activity of Fe as affected by deficiency or supplementation is unknown. This work aimed at preliminary exploring the relationship between Fe and photosynthesis, and also to find the most favorable iron source and level of pH for the growth of H. macrophylla. Two Fe sources, non-chelated iron sulfate (FeSO4) and iron ethylenediaminetetraacetic acid (Fe-EDTA), were supplemented to the multipurpose medium with a final Fe concentration of 2.78 mg·L-1. The medium without any Fe supplementation was used as the control. The pH of the agar-solidified medium was adjusted to either 4.70, 5.70, or 6.70, before autoclaving. The experiment was conducted in a culture room for 60 days with 25/18 °C day and night temperatures, and a 16-hour photoperiod provided at a light intensity of 50 mmol·m-2·s-1 photosynthetic photon flux density (PPFD) from white light-emitting diodes. Supplementary Fe increased the tissue Fe content, and leaves were greener with the medium pH of 4.70, regardless of the Fe source. Compared to the control, the number of leaves for plantlets treated with FeSO4 and Fe-EDTA were 2.0 and 1.5 times greater, respectively. The chlorophyll, macronutrient, and micronutrient contents were the greatest with Fe-EDTA at pH 4.70. Furthermore, the Fe in the leaf affected the photosynthesis by regulating stomata development, pigment content, and antioxidant system, and also by adjusting the expression of genes related to Fe absorption, transport, and redistribution. Supplementation of Fe in a form chelated with EDTA along with a medium pH of 4.70 was found to be the best for the growth and development of H. macrophylla plantlets cultured in vitro.


Assuntos
Hydrangea/crescimento & desenvolvimento , Ferro/farmacologia , Antioxidantes/metabolismo , Proteínas de Arabidopsis/genética , Sequência de Bases , FMN Redutase/metabolismo , Fluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hydrangea/anatomia & histologia , Hydrangea/efeitos dos fármacos , Hydrangea/enzimologia , Concentração de Íons de Hidrogênio , Micronutrientes/análise , Modelos Biológicos , Nutrientes/análise , Fotossíntese/efeitos dos fármacos , Pigmentação/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/ultraestrutura , Solubilidade
9.
BMC Plant Biol ; 21(1): 368, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384391

RESUMO

BACKGROUND: Melatonin is considered a potential plant growth regulator to enhance the growth of plants and increase tolerance to various abiotic stresses. Nevertheless, melatonin's role in mediating stress response in different plant species and growth cycles still needs to be explored. This study was conducted to understand the impact of different melatonin concentrations (0, 50, 100, and 150 µM) applied as a soil drench to maize seedling under drought stress conditions. A decreased irrigation approach based on watering was exposed to maize seedling after drought stress was applied at 40-45% of field capacity. RESULTS: The results showed that drought stress negatively affected the growth behavior of maize seedlings, such as reduced biomass accumulation, decreased photosynthetic pigments, and enhanced the malondialdehyde and reactive oxygen species (ROS). However, melatonin application enhanced plant growth; alleviated ROS-induced oxidative damages by increasing the photosynthetic pigments, antioxidant enzyme activities, relative water content, and osmo-protectants of maize seedlings. CONCLUSIONS: Melatonin treatment also enhanced the stomatal traits, such as stomatal length, width, area, and the number of pores under drought stress conditions. Our data suggested that 100 µM melatonin application as soil drenching could provide a valuable foundation for improving plant tolerance to drought stress conditions.


Assuntos
Melatonina/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Antioxidantes/metabolismo , Biomassa , Clorofila/metabolismo , Secas , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/ultraestrutura , Prolina/metabolismo , Espécies Reativas de Oxigênio , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Açúcares/metabolismo , Zea mays/enzimologia , Zea mays/fisiologia
10.
Mol Biol Rep ; 48(5): 4497-4515, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34101109

RESUMO

Cestrum is the second largest genus of family Solanaceae, after Solanum, distributed in warm to subtropical regions. Species of genus Cestrum are one of the most ethnopharmacological relevant plants, for their broad biological and pharmacological properties. There is a scarcity to taxonomical studies and identification of these plants in Egypt, thus, the objective of this study was to implement various morphological features, chemical markers and molecular tools to emphasize the taxonomical features of the different Cestrum species. Morphologically, the epidermal cells of C. diurnum, C. elegans and C. parqui were irregular with sinuate anticlinal wall patterns for both surfaces, while, C. nocturnum has anticlinal walls, sinuolate with polygonal to irregular epidermal cells on the abaxial surface. The species of Cestrum have hypostomatic leaves, except C. parqui that has amphistomatic leaves. The experimented species of Cestrum have Anomocytic and anisocytic stomata, while, C. elegans has a diacytic stomata. The morphologically identified Cestrum spp were molecular confirmed based on their ITS sequences, the sequences of C. diurnum, C. nocturnum, C. elegans and C. parqui were deposited on genbank with accession # MT742788.1, MT749390.1, MW091481.1 and MW023744.1, respectively. From the SCOT analyses, the four species of Cestrum were grouped into 2 clusters (I, II), cluster I contains C. elegans, C. nocturnum and C. parqui, while cluster II contains only C. diurnum with 100% polymorphism for all primers. From the GC-MS profile, the C. diurnum exhibited a diverse metabolic paradigm, ensuring their richness with different metabolites comparing to other experimented Cestrum species. Among the total resolved metabolites, 15-methyltricyclo 6.5.2-pentadeca-1,3,5,7,9, 11,13-heptene was the highly incident compound in C. elegans (35.89%) followed by C. parqui (21.81%) and C. diurnum (11.28%), while it absent on C. nocturnum. The compound, 2,2',6,6'-tetra-tert-butyl-4,4'-methylenediphenol was highly detected in C. elegans and C. dirunum with minor amounts in the other Cestrum species. Cypermethrin and 3-butynyl-2,2,5-trimethyl-1,3-dioxane-5-methanol were pivotally reported in C. nocturnum. Taken together, from molecular and metabolic markers, C. diurnum, C. parqui and C. elegans have higher proximity unlike to C. nocturnum.


Assuntos
Cestrum/classificação , Cestrum/genética , Filogenia , Estômatos de Plantas/genética , Estômatos de Plantas/ultraestrutura , Cestrum/anatomia & histologia , Cestrum/metabolismo , Primers do DNA , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , DNA Espaçador Ribossômico/genética , Egito , Microscopia Eletrônica de Varredura/métodos , Estômatos de Plantas/metabolismo , Polimorfismo Genético , Piretrinas/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33926963

RESUMO

Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-Å resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Membrana/genética , Folhas de Planta/genética , Estômatos de Plantas/genética , Ácido Abscísico/metabolismo , Ânions/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/ultraestrutura , Brachypodium/genética , Brachypodium/ultraestrutura , Dióxido de Carbono/metabolismo , Microscopia Crioeletrônica , Transporte de Íons/genética , Proteínas de Membrana/ultraestrutura , Fosforilação/genética , Folhas de Planta/ultraestrutura , Estômatos de Plantas/ultraestrutura , Conformação Proteica , Transdução de Sinais/genética
12.
Plant Cell Environ ; 44(6): 1728-1740, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33665817

RESUMO

Plants can absorb water through their leaf surfaces, a phenomenon commonly referred to as foliar water uptake (FWU). Despite the physiological importance of FWU, the pathways and mechanisms underlying the process are not well known. Using a novel experimental approach, we parsed out the contribution of the stomata and the cuticle to FWU in two species with Mediterranean (Prunus dulcis) and temperate (Pyrus communis) origin. The hydraulic parameters of FWU were derived by analysing mass and water potential changes of leaves placed in a fog chamber. Leaves were previously treated with abscisic acid to force stomata to remain closed, with fusicoccin to remain open, and with water (control). Leaves with open stomata rehydrated two times faster than leaves with closed stomata and attained approximately three times higher maximum fluxes and hydraulic conductance. Based on FWU rates, we propose that rehydration through stomata occurs primarily via diffusion of water vapour rather than in liquid form even when leaf surfaces are covered with a water film. We discuss the potential mechanisms of FWU and the significance of both stomatal and cuticular pathways for plant productivity and survival.


Assuntos
Folhas de Planta/metabolismo , Estômatos de Plantas/fisiologia , Prunus dulcis/metabolismo , Pyrus/metabolismo , Água/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Glicosídeos/farmacologia , Cinética , Microscopia Eletrônica de Varredura , Folhas de Planta/ultraestrutura , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/ultraestrutura
13.
Cells ; 10(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503919

RESUMO

The glucosinolate-myrosinase system is a well-known plant chemical defence system. Two functional myrosinase-encoding genes, THIOGLUCOSIDASE 1 (TGG1) and THIOGLUCOSIDASE 2 (TGG2), express in aerial tissues of Arabidopsis. TGG1 expresses in guard cells (GCs) and is also a highly abundant protein in GCs. Recently, by studying wild type (WT), tgg single, and double mutants, we showed a novel association between the glucosinolate-myrosinase system defence system, and a physical barrier, the cuticle. In the current study, using imaging techniques, we further analysed stomata and ultrastructure of GCs of WT, tgg1, tgg2 single, and tgg1 tgg2 double mutants. The tgg mutants showed distinctive features of GCs. The GCs of tgg1 and tgg1 tgg2 mutants showed vacuoles that had less electron-dense granular material. Both tgg single mutants had bigger stomata complexes. The WT and tgg mutants also showed variations for cell wall, chloroplasts, and starch grains of GCs. Abscisic acid (ABA)-treated stomata showed that the stomatal aperture was reduced in tgg1 single and tgg1 tgg2 double mutants. The data provides a basis to perform comprehensive further studies to find physiological and molecular mechanisms associated with ultrastructure differences in tgg mutants. We speculate that the absence of myrosinase alters the endogenous chemical composition, hence affecting the physical structure of plants and the plants' physical defence barriers.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/citologia , Arabidopsis/enzimologia , Glicosídeo Hidrolases/genética , Mutação/genética , Estômatos de Plantas/citologia , Ácido Abscísico/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/ultraestrutura , Coloração e Rotulagem , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
14.
Sci Rep ; 11(1): 1014, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441695

RESUMO

As the global population continues to increase, global food production needs to double by 2050 to meet the demand. Given the current status of the not expansion of cultivated land area, agronomic seedlings are complete, well-formed and strong, which is the basis of high crop yields. The aim of this experiment was to study the effects of seed germination and seedling growth in response to silicon (from water-soluble Si fertilizer). The effects of Si on the maize germination, seedling growth, chlorophyll contents, osmoprotectant contents, antioxidant enzyme activities, non-enzymatic antioxidant contents and stomatal characteristics were studied by soaking Xianyu 335 in solutions of different concentrations of Si (0, 5, 10, 15, 20, and 25 g·L-1). In this study, Si treatments significantly increased the seed germination and per-plant dry weight of seedlings (P < 0.05), and the optimal concentration was 15 g·L-1. As a result of the Si treatment of the seeds, the chlorophyll content, osmotic material accumulation and antioxidant defence system activity increased, reducing membrane system damage, reactive oxygen species contents, and stomatal aperture. The results suggested that 15 g·L-1 Si significantly stimulated seed germination and promoted the growth of maize seedlings, laying a solid foundation for subsequent maize growth.


Assuntos
Silício/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Antioxidantes/metabolismo , Carotenoides/metabolismo , China , Clorofila/metabolismo , Fertilizantes , Germinação/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/ultraestrutura , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Silício/administração & dosagem , Silício/química , Solubilidade , Zea mays/metabolismo
15.
BMC Plant Biol ; 20(1): 524, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203377

RESUMO

BACKGROUND: A structural phenomenon seen in certain lineages of angiosperms that has captivated many scholars including Charles Darwin is the evolution of plant carnivory. Evidently, these structural features collectively termed carnivorous syndrome, evolved to aid nutritional acquisition from attracted, captured and digested prey. We now understand why plant carnivory evolved but how carnivorous plants acquired these attributes remains a mystery. In an attempt to understand the evolution of Nepenthes pitcher and to shed more light on its role in prey digestion, we analyzed the transcriptome data of the highly specialized Nepenthes khasiana leaf comprising the leaf base lamina, tendril and the different parts/zones of the pitcher tube viz. digestive zone, waxy zone and lid. RESULTS: In total, we generated around 262 million high-quality Illumina reads. Reads were pooled, normalized and de novo assembled to generate a reference transcriptome of about 412,224 transcripts. We then estimated transcript abundance along the N. khasiana leaf by mapping individual reads from each part/zone to the reference transcriptome. Correlation-based hierarchical clustering analysis of 27,208 commonly expressed genes indicated functional relationship and similar cellular processes underlying the development of the leaf base and the pitcher, thereby implying that the Nepenthes pitcher is indeed a modified leaf. From a list of 2386 differentially expressed genes (DEGs), we identified transcripts encoding key enzymes involved in prey digestion and protection against pathogen attack, some of which are expressed at high levels in the digestive zone. Interestingly, many of these enzyme-encoding genes are also expressed in the unopened N. khasiana pitcher. Transcripts showing homology to both bacteria and fungi were also detected; and in the digestive zone, fungi are more predominant as compared to bacteria. Taking cues from histology and scanning electron microscopy (SEM) photomicrographs, we found altered expressions of key regulatory genes involved in leaf development. Of particular interest, the expression of class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIPIII) and ARGONAUTE (AGO) genes were upregulated in the tendril. CONCLUSIONS: Our findings suggest that N. khasiana pitchers employ a wide range of enzymes for prey digestion and plant defense, harbor microbes and probably evolved through altered expression of leaf polarity genes.


Assuntos
Caryophyllales/genética , Fungos/fisiologia , Transcriptoma , Padronização Corporal/genética , Caryophyllales/enzimologia , Caryophyllales/microbiologia , Caryophyllales/ultraestrutura , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/microbiologia , Estômatos de Plantas/ultraestrutura
16.
PLoS One ; 15(9): e0238589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881951

RESUMO

Scanning electron microscopy (SEM) is widely used to investigate the surface morphology, and physiological state of plant leaves. Conventionally used methods for sample preparation are invasive, irreversible, require skill and expensive equipment, and are time and labor consuming. This study demonstrates a method to obtain in vivo surface information of plant leaves by imaging replicas with SEM that is rapid and non-invasive. Dental putty was applied to the leaves for 5 minutes and then removed. Replicas were then imaged with SEM and compared to fresh leaves, and leaves that were processed conventionally by chemical fixation, dehydration and critical point drying. The surface structure of leaves was well preserved on the replicas. The outline of epidermal as well as guard cells could be clearly distinguished enabling determination of stomatal density. Comparison of the dimensions of guard cells revealed that replicas did not differ from fresh leaves, while conventional sample preparation induced strong shrinkage (-40% in length and -38% in width) of the cells when compared to guard cells on fresh leaves. Tilting the replicas enabled clear measurement of stomatal aperture dimensions. Summing up, the major advantages of this method are that it is inexpensive, non-toxic, simple to apply, can be performed in the field, and that results on stomatal density and in vivo stomatal dimensions in 3D can be obtained in a few minutes.


Assuntos
Folhas de Planta/ultraestrutura , Estômatos de Plantas/ultraestrutura , Microscopia Eletrônica de Varredura , Folhas de Planta/anatomia & histologia , Polivinil/química , Siloxanas/química , /anatomia & histologia
17.
Microsc Res Tech ; 83(9): 1103-1117, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32643201

RESUMO

In this study, foliar anatomy and pollen morphology of 10 species of Acanthaceae has been investigated using light and scanning electron microscopy. The study was aimed to highlight the role of microscopy in microteaching at community for proper characterization of plants using palyno-anatomical characters including pollen type, exine sculpturing, shape of epidermal cells, pattern of anticlinal wall, type and size of stomata, and trichome. Most of the species have polygonal cell shapes but some species have irregular, tetragonal, and pentagonal shape of epidermal cells. The largest epidermal cell length on adaxial and abaxial surface were observed in Asystasia gangetica 66.95 and 87.40 µm whereas least was observed on adaxial surface in Justicia adhatoda 36.9 µm and on abaxial surface in Barleria cristata 35.65 µm. In anatomy, species have diacytic type of stomata, whereas stomata of paracytic type observed in two species, while in A. gangetica cyclocytic type of stomata are present. Quantitively on abaxial surface, largest stomata length 29.9 µm and width 24.30 µm was noted in B. cristata. While shortest stomata length was observed in Ruellia prostrata 25.95 µm whereas minimum width of stomata was examined in Barleria acanthoides 2.05 µm. The diversity of trichomes are present in all species except in Ruellia brittoniana. Acanthaceae can be characterized by exhibiting different pollen morphology having five types of pollen shapes, prolate, spheroidal, perprolate, subprolate, and oblate spheroidal. Exine peculiarities showing variations such as reticulate, granulate, coarsely reticulate, lophoreticulate, perforate tectate, and granulate surface were examined.


Assuntos
Acanthaceae/anatomia & histologia , Epiderme Vegetal/anatomia & histologia , Folhas de Planta/anatomia & histologia , Pólen/ultraestrutura , Acanthaceae/citologia , Células Epidérmicas/ultraestrutura , Microscopia , Microscopia Eletrônica de Varredura , Epiderme Vegetal/citologia , Folhas de Planta/citologia , Estômatos de Plantas/ultraestrutura , Ensino , Tricomas/ultraestrutura
18.
Microsc Res Tech ; 83(9): 1066-1078, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32519471

RESUMO

The present study was carried out to identify the 20 medicinally important species of family Euphorbiaceae by the aid of scanning electron microscopy (SEM) of the foliar anatomical characteristics. Both qualitative and quantitative measurements for the anatomical characters like epidermal cells, stomata, trichomes, and subsidiary cells on both abaxial(ab) and adaxial(ad) epidermis were recorded. Remarkable variations in these anatomical features had been observed among the studied Euphorbiaceae species. Most species had epidermal cells irregular or polygonal in shape, only five species had hexagonal cells, that is, Euphorbia neriifolia L., Euphorbia prostate Aiton, Jatropha integerrima Jacq., Vernicia fordii (Hemsl.), and Euphorbia royleana Boiss. Stomata were abundant on abaxial epidermis as compared to adaxial epidermis. E. prostate Aiton, Euphorbia pulcherrima Willd. Ex Klotzsch and Phyllanthus emblica L. possessed anomocytic stomata, and Euphorbia helioscopia L., Euphorbia cotinifolia L., E. neriifolia L., and Ricinus communis L. possessed anisocytic stomata, while rest of the species had paracytic stomata. Trichomes were present in very few species including Euphorbia hirta L., E. prostate Aiton, E. pulcherrima Willd. Ex Klotzsch, and Putranjiva roxburghii Wall. Similarly, variations were also reported by quantitative features such as E. helioscopia L. can be distinguished from E. hirta on the basis of length of epidermal cells, that is, 103.4 ± 0.15 and 74.9 ± 0.55 µm, respectively. Moreover, E. pulcherrima Willd. Ex Klotzsch had trichomes with the length of 408 ± 0.55 µm and P. roxburghii Wall. had trichome with the length of 314.2 ± 1.35 µm, respectively. These findings confirmed that taxonomic utility of the anatomical traits for the identification of studied Euphorbiaceae taxa.


Assuntos
Células Epidérmicas/ultraestrutura , Euphorbiaceae/ultraestrutura , Estômatos de Plantas/ultraestrutura , Tricomas/ultraestrutura , Forma Celular , Tamanho Celular , Euphorbiaceae/classificação , Microscopia Eletrônica de Varredura , Epiderme Vegetal/anatomia & histologia , Folhas de Planta/anatomia & histologia
19.
Microsc Res Tech ; 83(8): 988-1006, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32372492

RESUMO

In the present study anatomical characterization of 20 medicinally important Asteroideae species were done under light and scanning electron microscopy. Variety of qualitative and quantitative anatomical characters like epidermal cells, stomata, guard cells, subsidiary cells, trichomes and oil droplets were observed. Generally pentagonal, polygonal, irregular or hexagonal, smooth, undulating thick walled epidermal cells were observed in studied species. In abaxial surface Thymophylla tenuiloba L. possessed the largest length of epidermal cell that is, 221.6 (156.6-286.6) µm whereas Bellis perenis L. showed the smallest length that is, 46.4 (32.6-60.2) µm. Average width of epidermal cells ranged from 57 (22-92) µm to 169 (127.9-210.1) µm. Cosmos sulphureus Cav. had smallest width while Thymophylla tenuiloba L. had the largest width. In adaxial surface Artemisia absinthium L. possessed the largest length of epidermal cell that is, 269 (165.1-372.9) µm whereas Bellis perenis L. showed the smallest length that is, 61.4 (42.6-80.2) µm. Average width of epidermal cells ranged from 50.8 (32.6-69) µm to 260 (116-202) µm. Thymophylla tenuiloba L. had smallest width while Dahlia pinnata Cav. had the largest width. Among stomatal characters anisocytic, anomocytic, and diacytic stomata were observed in selected species of Asteroideae. Nonglandular uniserate, multicellular, unbranched pointed tips with bulbous base trichomes were reported in some Asteroideae members while some possessed glandular, capitates mushroom like multicellular trichomes covered with tubercle papicles. Rounded, oval, triangular shaped oil droplets were observed in some species. It is concluded that qualitative and qualitative anatomical variations in trichomes, stomata and epidermal cells are of good taxonomic value for the Asteroideae species.


Assuntos
Asteraceae/anatomia & histologia , Células Epidérmicas/ultraestrutura , Folhas de Planta/ultraestrutura , Estômatos de Plantas/ultraestrutura , Tricomas/ultraestrutura , Asteraceae/classificação , Microscopia Eletrônica de Varredura , Epiderme Vegetal/ultraestrutura
20.
Plant Cell ; 32(5): 1414-1433, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169962

RESUMO

The aerial epidermis of plants plays a major role in environmental interactions, yet the development of the cellular components of the aerial epidermis-trichomes, stomata, and pavement cells-is still not fully understood. We have performed a detailed screen of the leaf epidermis in two generations of the well-established Solanum lycopersicum cv M82 × Solanum pennellii ac. LA716 introgression line (IL) population using a combination of scanning electron microscopy (SEM) techniques. Quantification of trichome and stomatal densities in the ILs revealed four genomic regions with a consistently low trichome density. This study also found ILs with abnormal proportions of different trichome types and aberrant trichome morphologies. This work has led to the identification of new, unexplored genomic regions with roles in trichome formation in tomato. This study investigated one interval in IL2-6 in more detail and identified a new function for the transcription factor SlMixta-like in determining trichome patterning in leaves. This illustrates how these SEM images, publicly available to the research community, provide an important dataset for further studies on epidermal development in tomato and other species of the Solanaceae family.


Assuntos
Loci Gênicos , Microscopia Eletrônica de Varredura , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/ultraestrutura , Folhas de Planta/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/ultraestrutura , Fatores de Transcrição/metabolismo , Alelos , Padronização Corporal , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Estudos de Associação Genética , Genoma de Planta , Fenótipo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Estômatos de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Tricomas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...